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Own Contributions
Leveraging ACSL [7]: ACSL is a specification language for C programs, used by
interactive verifiers, while automatic verifiers store invariant information in so-called
witnesses. By translating between these formats, we can create novel interactions
between interactive and automatic verifiers.
MetaVal [6]: Verification Witnesses increase the trust in the verification result,
since they allow to validate the proof. The number of available validators however is
limited. MetaVal Encodes the validation as a verification problem into the original
program, which allows to use off-the-shelf verifiers for validation.
Unifying Loop Abstractions [5]: Loop abstractions are easy yet often very
powerful program transformations which correspond to transition invariants of the
loop. Determining which of the available loop abstractions need to be applied for
a successful proof is not straight-forward. Our approach allows to apply loop ab-
stractions in a CEGAR-style approach, determining the right level of abstraction
automatically.
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Loop Abstractions
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i:=0
[i<N]

i:=i+1
enter<h>

if (i<N) {
i:=nondet_int()
assume(i>=N)

}

leave<h>

[i>=N]

[i!=N][i==N]

Loop abstractions are woven into the
CFA of the program. State space ex-
ploration is then guided into the ab-
stractions. On spurious counterexam-
ples, CEGAR refinement will lead to
other paths being taken. Interfacing with
the CFA allows to reuse existing analysis
in CPAchecker straight away.
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