
Leveraging Invariant Information
Towards Incremental Software Model Checking

Martin Spiessl
spiessl@sosy.ifi.lmu.de

Supervisors: Dirk Beyer & Helmut Seidl
Collaborators: Karlheinz Friedberger (ConVeY) & Sven Umbricht
& Marian Lingsch

ConVeY

Overview of Transformations in ConVeY

Input Output

Condition

Condition

Verification Information Verification Information

Previous Code

Current Code Witness

Validation as Program Verdict

Annotated Program

Btor2 as Program

Witness Validation as Program

Annotated Program

Btor2 Specification Btor2 as Program

Transformation

MetaVal Transformer [6]

Btor2C [1]

Witness2ACSL [7]

Witness2Assert [7]

Interactive Verifier

Abstraction Strategies [5]

Difference Generator [3]

CoVeriTeam Service [4]

Block Abstraction [2]

Program

Program

Verifier

Conditional Verifier

CFA
Model

Checking

Own Contributions
Leveraging ACSL [7]: ACSL is a specification language for C programs, used by
interactive verifiers, while automatic verifiers store invariant information in so-called
witnesses. By translating between these formats, we can create novel interactions
between interactive and automatic verifiers.
MetaVal [6]: Verification Witnesses increase the trust in the verification result,
since they allow to validate the proof. The number of available validators however is
limited. MetaVal Encodes the validation as a verification problem into the original
program, which allows to use off-the-shelf verifiers for validation.
Unifying Loop Abstractions [5]: Loop abstractions are easy yet often very
powerful program transformations which correspond to transition invariants of the
loop. Determining which of the available loop abstractions need to be applied for
a successful proof is not straight-forward. Our approach allows to apply loop ab-
stractions in a CEGAR-style approach, determining the right level of abstraction
automatically.

MetaVal

Program

Witness

Specification

Program’

Specification’

TRUE

UNKNOWN

FALSE

Transformer Verifier

CPAchecker

UAutomizer

Symbiotic

. . .

Validator

Interfacing Tools with ACSL

Transform

ACSL2Witness

Transform

Witness2Assert

Analyze

Verifier

p

ϕb

p

ϕ′
b

ω

p’

ϕ′′
b

r

ω’

Transform

ACSL2Witness

Analyze

Validator

p

ϕb

p

ϕ′
b

ω

r

ω’

Transform

Witness2ACSL

Analyze

Verifier

p

ϕb

ω

p

ϕ′
b

r

Transform

Witness2Assert

Analyze

Verifier

p

ϕb

ω

p

ϕ′
b

r

ω’

Loop Abstractions
2

3 4

6

7

8

9

err

α

ω

α′

ω′

i:=0
[i<N]

i:=i+1
enter<h>

if (i<N) {
i:=nondet_int()
assume(i>=N)

}

leave<h>

[i>=N]

[i!=N][i==N]

Loop abstractions are woven into the
CFA of the program. State space ex-
ploration is then guided into the ab-
stractions. On spurious counterexam-
ples, CEGAR refinement will lead to
other paths being taken. Interfacing with
the CFA allows to reuse existing analysis
in CPAchecker straight away.

References
[1] D. Beyer, P.-C. Chien, and N.-Z. Lee. “Bridging Hardware and Software Analysis with Btor2C: A

Word-Level-Circuit-to-C Converter”. In: TACAS 2023, Held as Part of ETAPS 2023, Paris,
France, 2023, Proceedings. Springer, 2023.

[2] D. Beyer and K. Friedberger. “Domain-Independent Interprocedural Program Analysis using
Block-Abstraction Memoization”. In: ESEC/FSE ’20, USA, November 8-13, 2020. Ed. by P.
Devanbu, M. Cohen, and T. Zimmermann. ACM, 2020, pp. 50–62.

[3] D. Beyer, M.-C. Jakobs, and T. Lemberger. “Difference Verification with Conditions”. In: SEFM
2020, Amsterdam, The Netherlands, September 14-18, 2020, Proceedings. Ed. by F. d. Boer
and A. Cerone. LNCS 12310. Springer, 2020, pp. 133–154.

[4] D. Beyer, S. Kanav, and H. Wachowitz. “CoVeriTeam Service: Verification as a Service”. In:
ICSE 2023, Melbourne, Australia, May 14–20, 2023, Proceedings, Part II. Ed. by J. Grundy,
L. Pollock, and M. D. Penta. IEEE, 2023.

[5] D. Beyer, M. L. Rosenfeld, and M. Spiessl. “A Unifying Approach for Control-Flow-Based Loop
Abstraction”. In: SEFM 2022, Berlin, Germany, September 26-30, 2022, Proceedings. Ed. by
B.-H. Schlingloff and M. Chai. LNCS 13550. Springer, 2022, pp. 3–19.

[6] D. Beyer and M. Spiessl. “MetaVal: Witness Validation via Verification”. In: CAV 2020, Los
Angeles, CA, USA, July 21-24, 2020, Proceedings, Part II. Ed. by S. K. Lahiri and C. Wang.
LNCS 12225. Springer, 2020, pp. 165–177.

[7] D. Beyer, M. Spiessl, and S. Umbricht. “Cooperation between Automatic and Interactive Software
Verifiers”. In: SEFM 2022, Berlin, Germany, September 26-30, 2022, Proceedings. Ed. by
B.-H. Schlingloff and M. Chai. LNCS 13550. Springer, 2022, 111–128.

ConVeY Evolving Systems


